References

’`

Allaire, JJ, J. Horner, and Y. Xie et al. 2019. Markdown: Render Markdown with the c Library ’Sundown’. https://CRAN.R-project.org/package=markdown.

Bakka, H., H. Rue, and G.-A. Fuglstad et al. 2018. “Spatial Modelling with Inla: A Review,” no. Feb. http://arxiv.org/abs/1802.06350.

Bivand, R., T. Keitt, and B. Rowlingson. 2019. Rgdal: Bindings for the ’Geospatial’ Data Abstraction Library. https://CRAN.R-project.org/package=rgdal.

Bivand, R. S., E. J. Pebesma, and V. Gomez-Rubio. 2013. Applied Spatial Data Analysis with R. Second Edition. Springer. http://www.asdar-book.org/.

Blangiardo, M., and M. Cameletti. 2015. Spatial and Spatio-Temporal Bayesian Models with R-Inla. John Wiley & Sons.

Blumenstock, J., G. Cadamuro, and R. On. 2015. “Predicting Poverty and Wealth from Mobile Phone Metadata.” Science 350 (6264): 1073–6.

Cheng, J., B. Karambelkar, and Y. Xie. 2018. Leaflet: Create Interactive Web Maps with the Javascript ’Leaflet’ Library. https://CRAN.R-project.org/package=leaflet.

Fick, S. E., and R. J. Hijmans. 2017. “WorldClim 2: New 1-Km Spatial Resolution Climate Surfaces for Global Land Areas.” International Journal of Climatology 37 (12): 4302–15.

F. Lindgren, and H. Rue. 2015. “Bayesian Spatial Modelling with R-INLA.” Journal of Statistical Software 63 (19): 1–25. http://www.jstatsoft.org/v63/i19/.

Henderson, Storeygard, J. V., and D. N. Weil. 2012. “Measuring Economic Growth from Outer Space.” American Economic Review 102 (2): 994–1028.

Hijmans, R. J. 2019a. Raster: Geographic Data Analysis and Modeling. https://CRAN.R-project.org/package=raster.

———. 2019b. Raster: Geographic Data Analysis and Modeling. https://CRAN.R-project.org/package=raster.

Hunziker, P. 2017. “Velox: Fast Raster Manipulation and Extraction.” https://github.com/hunzikp/velox.

Lindgren, H. Rue, F., and J. Lindström. 2011. “An Explicit Link Between Gaussian Fields and Gaussian Markov Random Fields: The Stochastic Partial Differential Equation Approach (with Discussion).” Journal of the Royal Statistical Society, Series B 73 (4): 423–98.

Martins, T. G., D. Simpson, F. Lindgren, and H. Rue. 2013. “Bayesian Computing with INLA: New Features.” Computational Statistics and Data Analysis 67: 68–83.

Moraga, P. 2019. Geospatial Health Data: Modeling and Visualization with R-Inla and Shiny. Chapman & Hall/CRC Biostatistics Series.

R Core Team. 2018. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.

———. 2020. Package Parallel. Vienna, Austria: R Foundation for Statistical Computing. https://stat.ethz.ch/R-manual/R-devel/library/parallel/doc/parallel.pdf.

Rizzo, M., and G. Szekely. 2018. Energy: E-Statistics: Multivariate Inference via the Energy of Data. https://CRAN.R-project.org/package=energy.

Rue, S. Martino, H., and N. Chopin. 2009. “Approximate Bayesian Inference for Latent Gaussian Models Using Integrated Nested Laplace Approximations (with Discussion).” Journal of the Royal Statistical Society, Series B 71: 319–92.

Sievert, C. 2018. Interactive Web-Based Data Visualization with R, Plotly, and Shiny. https://plotly-book.cpsievert.me.

Simpson, D., and H. Rueand A. Riebler et al. 2017. “Penalising Model Component Complexity: A Principled, Practical Approach to Constructing Priors.” Statistical Science 32 (1): 1–28.

Steele, J. E., P. Roe Sundsøy, and C. et al. Pezzulo. 2017. “Mapping Poverty Using Mobile Phone and Satellite Data.” Journal of the Royal Society Interface 14 (127): 20160690.

Wickham, H., R. François, L. Henry, and K. Müller. 2019. Dplyr: A Grammar of Data Manipulation. https://CRAN.R-project.org/package=dplyr.

Xie, Y. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.

Zuur, A. F., E. N. Ieno, and A. A. Saveliev. 2017. Beginner’s Guide to Spatial, Temporal, and Spatial-Temporal Ecological Data Analysis with R-Inla. Vol. 1. Highland Statistics Ltd.